Optimization Techniques for Tree-Structured Nonlinear Problems
نویسندگان
چکیده
Robust model predictive control approaches and other applications lead to nonlinear optimization problems defined on (scenario) trees. We present structure-preserving Quasi-Newton update formulas as well as structured inertia correction techniques that allow to solve these problems by interior-point methods with specialized KKT solvers for tree-structured optimization problems. The same type of KKT solvers could be used in active-set based SQP methods. The viability of our approach is demonstrated by two robust control problems.
منابع مشابه
Superlinearly convergent exact penalty projected structured Hessian updating schemes for constrained nonlinear least squares: asymptotic analysis
We present a structured algorithm for solving constrained nonlinear least squares problems, and establish its local two-step Q-superlinear convergence. The approach is based on an adaptive structured scheme due to Mahdavi-Amiri and Bartels of the exact penalty method of Coleman and Conn for nonlinearly constrained optimization problems. The structured adaptation also makes use of the ideas of N...
متن کاملSequential Convex Programming Methods for A Class of Structured Nonlinear Programming
In this paper we study a broad class of structured nonlinear programming (SNLP) problems. In particular, we first establish the first-order optimality conditions for them. Then we propose sequential convex programming (SCP) methods for solving them in which each iteration is obtained by solving a convex programming problem. Under some suitable assumptions, we establish that any accumulation poi...
متن کاملOPTIMIZATION OF TREE-STRUCTURED GAS DISTRIBUTION NETWORK USING ANT COLONY OPTIMIZATION: A CASE STUDY
An Ant Colony Optimization (ACO) algorithm is proposed for optimal tree-structured natural gas distribution network. Design of pipelines, facilities, and equipment systems are necessary tasks to configure an optimal natural gas network. A mixed integer programming model is formulated to minimize the total cost in the network. The aim is to optimize pipe diameter sizes so that the location-alloc...
متن کاملAn efficient modified neural network for solving nonlinear programming problems with hybrid constraints
This paper presents the optimization techniques for solving convex programming problems with hybrid constraints. According to the saddle point theorem, optimization theory, convex analysis theory, Lyapunov stability theory and LaSalleinvariance principle, a neural network model is constructed. The equilibrium point of the proposed model is proved to be equivalent to the optima...
متن کاملA technique for speeding up the solution of the Lagrangean dual
We propose techniques for the solution of the LP relaxation and the Lagrangean dual in combinatorial optimization and nonlinear programming problems. Our techniques find the optimal solution value and the optimal dual multipliers of the LP relaxation and the Lagrangean dual in polynomial time using as a subroutine either the Ellipsoid algorithm or the recent algorithm of Vaidya. Moreover, in pr...
متن کامل